Спорт, питание, похудение, упражнение

Снижение парашютиста. Движение в воздухе до раскрытия парашюта С какой скорость падает парашютист

Читайте также:
  1. Биологическая эволюция, прогресс нашего биологического вида – это снижение примативности, повышение альтруистичности и укрепление парной половой структуры.
  2. Биологическая эволюция, прогресс нашего биологического вида - это снижение примативности, повышение альтруистичности и укрепление парной половой структуры.
  3. Какой показатель не используется при осуществлении капитальных вложений, направленных на снижение себестоимости?
  4. Ла депутатов и сенаторов, снижение возрастного ценза сенаторов
  5. Мероприятия, направленные на снижение уровня радиоактивного загрязнения сельскохозяйственной продукции
  6. Основные задачи Республиканской программы - снижение уровней производственного травматизма и профессиональной заболеваемости.
  7. Отработки изделий на технологичность. Снижение трудоемкости пригоночных работ
  8. Рекомендуемое снижение допускаемой нагрузки на ветви стропа
  9. Себестоимость сельскохозяйственной продукции и методика ее исчисления. Факторы, определяющие снижение себестоимости сельскохозяйственной продукции в рыночных условиях.

Скорость падения парашютиста зависит от времени падения, плотности воздушной среды, площади падающего тела и коэффициента его лобового сопротивления.

На скорость падения масса падающего тела влияет незначительно.

Ввиду того что спортивные и тренировочные прыжки с. парашютом выполняются из самолетов, летящих на небольших скоростях, влияние начальной горизонтальной скорости на вертикальную скорость падения при расчетах не учитывается.

Если начальная вертикальная скорость равна нулю, то расстояние, пройденное телом до тех пор пока скорость невелика, будет зависеть только от одной величины - ускорения силы тяжести g и пройденный путь можно определить по формуле

где t- время падения, с.

С нарастанием скорости вступает в силу целый ряд других факторов.

На падающее в воздушной среде тело действуют две силы:-сила тяжести G, всегда направленная вниз, и сила сопротивления воздуха Q, направленная в сторону, противоположную направлению перемещения тела. Если отсутствует горизонтальная составляющая скорости, то сила сопротивления воздуха направлена против силы тяжести (рис. 1).

Скорость падения будет возрастать до того момента, пока силы G и Q не уравновесятся:

Это состояние называется установившимся падением, а соответствующая ему скорость - предельной (критической) скоростью.

Критическая скорость определяется по формуле

Эта скорость при Сх парашютиста 0,3 будет равна 42 м/с, а при Сх парашютиста 0,15-58 м/с.

Поскольку плотность воздуха с высотой меняется, то и скорость падения будет постоянно меняться.

Рис. 1. Противодействие сил при падении парашютиста

Расстояние, проходимое парашютистом за время падения с высоты 1500-2000 м в зависимости от положения тела, показано в табл. 1.

С увеличением массы парашютиста увеличивается и скорость его падения. При этом, однако, надо учитывать, что увеличение массы парашютиста всегда связано с увеличением миделя тела, а следовательно, и с увеличением сопротивления воздуха, что в среднем приводит к незначительному увеличению скорости. Ориентировочно можно считать, что изменение массы парашютиста на 10 кг вызывает изменение скорости при установившемся падении на 2%, что у поверхности земли составит разницу в 1 м/с.

Нагрузки при раскрытии парашюта. При введении парашюта в действие происходит снижение приобретенной при падении скорости. Из механики известно, что всякое изменение скорости в единицу времени по величине или направлению называется ускорением.

Если, например, скорость в начале движения была , а через время t стала , то среднее ускорение определяют по формуле

где а - ускорение;

Скорость в начале движения;

- скорость в конце движения;

t- время, за которое произошло изменение скорости.

Зная скорость в начале и конце движения, например при раскрытии парашюта, а также время, за которое происходит его полное раскрытие, можно определить величину среднего ускорения.

Если принять скорость падения равной 50 м/с, скорость после раскрытия парашюта , равной 5 м/с, и время t, за которое произошло полное раскрытие парашюта, равным 2 с, то получим

=

Знак минус указывает на замедление (торможение) скорости падения.

Зная, что ускорение при свободном падении равно 9,81 м/с 2 , определим, во сколько раз увеличилось ускорение, т. е. какова величина перегрузки:

Имея данные о перегрузке, легко определить и нагрузку F, действующую на тело в момент раскрытия парашюта. Ее вычисляют по формуле

F == mgn.

При массе парашютиста 70 кг получим

F =70.9,81.2,3= 1579,4 Н (161 кгс).

Это значит, что парашютист в момент раскрытия парашюта как бы «прибавляет» в массе на величину, пропорциональную перегрузке. Такие перегрузки человек переносит легко, тем более что они возникают не мгновенно, а достигают максимальной величины через 2 с, за которые происходит изменение скорости

Таблица 1

Время падения, Положение тела
устойчивое вниз головой неустойчивое устойчивое плашмя
расстояние, пройденное телом, м
4.9 4,9 4.9
19.5 19.5 19,5
44,0 43,8 43.5
76,0 75,0 73,5

Скорость снижения с раскрытым парашютом. При установившейся скорости снижения с парашютом, не имеющим собственной горизонтальной скорости, сила сопротивления купола Q находится в равновесии с силой тяжести G. Силы. в этом случае располагаются, как это указано на рис. 1.

Когда равновесие достигнуто, т. е. G==Q, тогда

Отсюда скорость снижения у земли для парашютнойсистемы будет

Если принять силу тяжести системы G==90 кгс, коэффициент лобового сопротивления =0,9, а площадь купола парашюта S=55 м 2 , то получим

=

что соответствует снижению с куполом парашюта УТ-15

Современные спортивные парашюты имеют собственную горизонтальную скорость. Это дает им возможность перемещаться при снижении не только вместе с воздушной массой по отношению к земле, но и относительно воздушной массы в том или ином направлении. Собственная горизонтальная скорость возникает у купола за счет реактивного эффекта, получаемого при выходе воздуха через отверстия в куполе.

Из аэродинамики известно, что в результате перемещения тела в воздушной среде, силе, действующей на тело по оси перемещения, противодействует сила сопротивления воздуха. При условии равенства этих сил движение по оси перемещения будет равномерным. При увеличении одной из сил возникает дополнительная сила, направленная перпендикулярно линии движения. В аэродинамике эта сила называется подъемной и обозначается буквой Y.

Рис. 2. Схема разложения сил при парашютировании с "планирующим "куполом:

G - общий полетный вес системы «парашютист + парашют»; Q - сила лобового сопротивления; Y - подъемная сила; W - скорость парашютирования: R - результирующая сила

Сила эта невелика и поднять купол вверх, как например при полете самолета, она не может, но оказывает существенное влияние на скорость снижения при прыжках с парашютом, имеющим собственную горизонтальную скорость перемещения, и с ней необходимо считаться.

Скорость падения тела в газе или жидкости стабилизируется по достижении телом скорости, при которой сила гравитационного притяжения уравновешивается силой сопротивления среды.

При движении в вязкой среде более крупных объектов, однако, начинают преобладать иные эффекты и закономерности. При достижении дождевыми каплями диаметра всего лишь в десятые доли миллиметра вокруг них начинают образовываться так называемые завихрения в результате срыва потока. Вы их, возможно, наблюдали весьма наглядно: когда машина осенью едет по дороге, засыпанной опавшей листвой, сухие листья не просто разметаются по сторонам от машины, но начинают кружиться в подобии вальса. Описываемые ими круги в точности повторяют линии вихрей фон Кармана , получивших свое название в честь инженера-физика венгерского происхождения Теодора фон Кармана (Theodore von Kármán, 1881-1963), который, эмигрировав в США и работая в Калифорнийском технологическом институте, стал одним из основоположников современной прикладной аэродинамики. Этими турбулентными вихрями обычно и обусловлено торможение — именно они вносят основной вклад в то, что машина или самолет, разогнавшись до определенной скорости, сталкиваются с резко возросшим сопротивлением воздуха и дальше ускоряться не в состоянии. Если вам доводилось на большой скорости разъезжаться на своем легковом автомобиле с тяжелым и быстрым встречным фургоном и машину начинало «водить» из стороны в сторону, знайте: вы попали в вихрь фон Кармана и познакомились с ним не понаслышке.

При свободном падении крупных тел в атмосфере завихрения начинаются практически сразу, и предельная скорость падения достигается очень быстро. Для парашютистов, например, предельная скорость составляет от 190 км/ч при максимальном сопротивлении воздуха, когда они падают плашмя, раскинув руки, до 240 км/ч при нырянии «рыбкой» или «солдатиком».

Допустим, что парашютист совершает затяжной прыжок (рис. 3.28). Пусть масса парашютиста коэффициент сопротивления воздуха при движении парашютиста с нераскрытым парашютом а с раскрытым

Движение парашютиста до раскрытия парашюта будет неравномерным. Во время движения на него действуют две силы (рис. 3.29): сила тяжести и сила сопротивления воздуха Будем считать положительным направление вниз. Запишем для этого случая уравнение второго закона Ньютона:

В этом уравнении два неизвестных: . Необходимым дополнительным уравнением будет уравнение, связывающее силу сопротивления воздуха со скоростью:

Подставляя значение из этого уравнения в уравнение второго закона Ньютона, получим:

Воспользуемся этим уравнением и проследим за изменением ускорения. По условию в начальный момент скорость следовательно, и сила сопротивления воздуха равна нулю. Поэтому ускорение . В первые моменты движения скорость быстро нарастает. Вместе с ней растет сила сопротивления воздуха, разность сил убывает и ускорение начинает уменьшаться. График изменения ускорения во времени представлен на рис. 3.30, а.

Так как ускорение а становится все меньше, то в последующие промежутки времени рост скорости и изменение силы сопротивления все более замедляются.

Как видно из уравнения, можно указать такую предельную скорость упр, при которой сила сопротивления воздуха станет равной силе тяжести, а ускорение обратится в нуль. Значение этой скорости определится из уравнения

Используя график (рис. 3.30, б), можно проследить за изменением скорости. Вначале скорость быстро возрастает. Затем рост ее замедляется, и она постепенно приближается к значению упр, равному скорости установившегося равномерного движения.

Подводя итоги, можно сказать, что сначала движение парашютиста было ускоренным, а потом равномерным. При этом ускорение его уменьшилось от значения до нуля, а скорость увеличивалась от нуля до значения соответствующего установившемуся движению.

С какой бы достаточно большой высоты ни начал падение парашютист, он с нераскрытым парашютом подходил бы к Земле с постоянной скоростью, равной примерно

Таким образом, действие сил сопротивления воздуха совершенно меняет всю картину свободного падения тел: при падении в воздухе все тела движутся ускоренно только в начальный, не очень большой промежуток времени, а затем их движение становится равномерным. Такую картину возникновения стационарного равномерного движения можно увидеть, наблюдая за падением шарика в сосуде с какой-либо вязкой жидкостью (рис. 3.31).

А теперь рассмотрим, что же происходит при раскрытии парашюта.

Во время раскрытия парашюта резко возрастает сила сопротивления воздуха, и коэффициент сопротивления становится равным Сила сопротивления становится больше силы тяжести (рис. 3.32). Возникают ускорения, направленные вверх. Движение становится замедленным, начиная с момента полного раскрытия парашюта.

Куда же целиться? Мэги грохнулся на каменный вокзальный пол, но его падение затормозилось, когда он за момент до этого пробил стеклянную кровлю. Больно, зато спасительно. Сгодится и стог сена. Некоторые счастливчики остались живы, угодив в густой кустарник. Лесная чаща — тоже неплохо, хотя можно напороться на какой-нибудь сук. Снег? Просто идеально. Болото? Мягкая, покрытая растительностью трясина — самый желанный вариант. Хамильтон рассказывает о случае, когда скайдайвер с нераскрывшимся парашютом угодил прямо на высоковольтные провода. Провода спружинили и подбросили его вверх, сохранив ему жизнь. Самая опасная поверхность — вода. Как и бетон, она практически несжимаема. Результат падения на океанскую гладь будет примерно таким же, как на тротуар. Разница только в том, что асфальт- увы! — не раскроется под вами, чтобы навсегда поглотить разбитое тело.

Не упуская из виду намеченную цель, займитесь положением вашего тела. Чтобы снизить скорость падения, действуйте, как парашютист при затяжном прыжке. Раскиньте пошире ноги и руки, запрокиньте повыше голову, расправьте плечи, и вы сами собой развернетесь грудью к земле. Ваше лобовое сопротивление сразу вырастет, и появятся возможности для маневра. Главное — не расслабляйтесь. В вашем, откровенно скажем, затруднительном положении вопрос, как подготовиться к встрече с землей, остается, к сожалению, до конца не решенным. В журнале War Medicine от 1942 года была опубликована статья на эту тему. В ней говорилось: «В попытке избежать травм большую роль играет распределение нагрузок и их компенсация». Отсюда рекомендация — падать нужно плашмя. С другой стороны, доклад 1963 года, опубликованный Федеральным агентством авиации (FAA), утверждает, что оптимальной для сохранения жизни будет классическая группировка, принятая среди скайдайверов: ноги вместе, колени повыше, голени прижаты к бедрам. В том же источнике отмечено, что выживанию при катастрофе весьма способствует натренированность в таких видах спорта, как борьба или акробатика. При падении на твердые поверхности особенно полезно было бы иметь некоторые навыки в восточных единоборствах.

Японский скайдайвер Ясухиро Кубо тренируется так: выбрасывает из самолета свой парашют, а затем выпрыгивает сам. Затягивая процесс до предела, он догоняет свое снаряжение, надевает и после этого дергает за кольцо. В 2000 году Кубо выпрыгнул на высоте 3 км и провел в свободном падении 50 секунд, пока не догнал ранец со своим парашютом. Все эти полезные навыки можно отрабатывать и в более безопасной обстановке, например в тренажерах свободного падения — вертикальных аэродинамических трубах. Впрочем, тренажеры не позволят вам отработать самый ответственный этап — встречу с землей.

Если вас ждет внизу водная поверхность, готовьтесь к быстрым и решительным действиям. По оставшимся в живых любителям прыгать с высоких мостов можно сделать вывод, что оптимальным был бы вход в воду «солдатиком», то есть ногами вперед. Тогда у вас будут хоть какие-то шансы выбраться на поверхность живым.

С другой стороны, знаменитые ныряльщики со скал, оттачивающие свое мастерство неподалеку от Акапулько, считают, что лучше входить в воду головой вперед. При этом руки со сплетенными пальцами они выставляют перед головой, защищая ее от удара. Вы можете выбрать любую из этих поз, но постарайтесь до самой последней секунды сохранять парашютирующую позицию. Затем, над самой водой, если вы предпочтете нырнуть «солдатиком», настоятельно рекомендуем вам изо всех сил напрячь ягодицы. Объяснять, почему, было бы не слишком прилично, но вы наверняка и сами догадаетесь.


Какая бы поверхность вас внизу ни ждала, ни в коем случае не приземляйтесь на голову. Исследователи из Института безопасности дорожного движения пришли к выводу, что в подобных ситуациях основной причиной смерти оказывается черепно-мозговая травма. Если вас все равно несет головой вперед, лучше уж приземляйтесь на лицо. Это безопаснее, чем удар затылком или верхней частью черепа.

07:02:19 Высота 300 метров

Если, выпав из самолета, вы занялись чтением этой статьи, то к настоящему моменту дошли как раз до этих строк. Начальный курс у вас уже есть, и теперь пора взять себя в руки и сосредоточиться на стоящей перед вами задаче. Впрочем, вот еще кое-какая дополнительная информация.

Статистика показывает, что в случае катастрофы выгоднее оказаться членом экипажа или ребенком, и если есть выбор, лучше терпеть крушение на военном самолете. За последние 40 лет зафиксировано по крайней мере 12 авиакатастроф, когда в живых оставался только один человек. В этом списке четверо были членами экипажа, а семь — пассажирами в возрасте до 18 лет. Среди спасшихся Мохаммед эль-Фатех Осман, двухлетний ребенок, который пережил крушение «боинга» в Судане в 2003 году, приземлившись среди его обломков. В прошлом июне, когда неподалеку от Коморских островов потерпел крушение лайнер Yemenia Airways, в живых осталась только 14-летняя Бахия Бакари.


Выживание членов экипажа можно связать с более надежными системами пассивной безопасности, а вот почему чаще в живых остаются дети — пока не ясно. В исследованиях FAA отмечается, что у детей, особенно в возрасте до четырех лет, более гибкие кости, мышцы более расслаблены и более высокий процент подкожного жира, эффективно защищающего внутренние органы. Люди маленького роста — если их голова не высовывается из-за спинок самолетных кресел — хорошо защищены от летящих обломков. При небольшом весе тела ниже будет и устоявшаяся скорость падения, а меньшее лобовое сечение снижает шанс напороться при приземлении на какой-нибудь острый предмет.

07:02:25 Высота 0 метров

Итак, приехали. Удар. Вы все еще живы? И каковы ваши действия? Если вы отделались мелкими травмами, можете встать и закурить, как поступил британец Николас Алкемейд, бортстрелок хвостового пулемета, который в 1944 году после падения с шестикилометровой высоты приземлился в заснеженную чащобу. Если же без шуток, то впереди вас ждет еще немало хлопот.

Вспомним случай с Юлианой Копке. В 1971 году в канун Рождества она летела на самолете Lockheed Electra. Лайнер взорвался где-то над Амазонкой. 17-летняя немка пришла в себя на следующее утро под пологом джунглей. Она была пристегнута к своему сиденью, а вокруг валялись груды рождественских подарков. Раненная, в полном одиночестве, она заставила себя не думать о погибшей матери. Вместо этого она сосредоточилась на совете отца-биолога: «Потерявшись в джунглях, ты выйдешь к людям, следуя за течением воды». Копке шла вдоль лесных ручейков, которые постепенно сливались в речки. Она обходила крокодилов и колотила по мелководью палкой, чтобы распугать скатов. Где-то, споткнувшись, потеряла туфлю, из одежды на ней осталась только рваная мини-юбка. Из еды при ней был только пакет конфет, а пить приходилось темную, грязную воду. Она не обращала внимания на сломанную ключицу и на воспалившиеся открытые раны.

Ответ для Гостя.

Живот к земле положение, предельная скорость около 200 км /ч. Вниз головой 240-290 km/h. Дальнейшая минимизация 480 km/h.

Рекорды:
Christian Labhart SUI World Cup 2010-Finland-Utti-4/6 June 2010 526.93 Km/h
Clare Murphy GBR World Cup 2007-Finland-Utti-15/17 June 2007 442.73 Km/h

Максимальная скорость падения в воздухе является величиной предельной. И этот предел достигается за весьма короткое расстояние - около 500 метров. Это означает, что человек, упавший с вершины Останкинской телебашни, и человек, вывалившийся из самолёта на высоте 10 км - не разгонятся больше 240 км/час. Но эта скорость зависит от разных вводных. Например, от одежды человека, положения его тела. Для парашютистов, например, предельная скорость составляет от 190 км/ч при максимальном сопротивлении воздуха, когда они падают плашмя, раскинув руки, до 240 км/ч при нырянии «рыбкой» или «солдатиком».

Шансы выжить при падении с самолёта не представляются величиной маловероятной. Американский историк-любитель Джим Хамильтон собирает статистику по таким случаям.

Вот некоторые из них:

В 1972 году сербская стюардесса Весна Вулович выпала из самолёта DC-9, взорвавшегося над Чехословакией. Девушка пролетела 10 километров, будучи зажата между своим сиденьем, тележкой из буфета и телом ещё одного члена экипажа. Она приземлилась на заснеженный горный склон и долго по нему скользила. В итоге получила тяжёлые травмы, но осталась жива…

В 1943 году американский лётчик Алан Мэги выполнял боевое задание над Францией. Его выбросило из самолёта B-17. Пролетев 6 километров, он пробил стеклянную крышу железнодорожного вокзала. Практически сразу же его взяли в плен немцы, который были потрясены, увидев его живым.

Уже в наше время один скайдайвер с нераскрывшимся парашютом упал на линию высоковольтной передачи. Провода спружинили и подбросили его вверх, в итоге он остался жив.

В 1944 году британский лётчик Николас Алкемейд упал с шестикилометровой высоты. Он приземлился в заснеженную чащу и отделался лишь мелкими травмами. Убедившись в последнем, Николас встал из сугроба и закурил.

В 1971 году самолёт Lockheed L-188A Electra попал в бурю над Амазонкой. Из 92 человеко погибло 91. Но 17-летняя немецкая девушка Юлиана Кнопке выжила, упав с высоты примерно в 3 километра. Она пришла в себя на следующее утро. Вокруг были джунгли, обломки и кучи рождественских подарков, выпавших из самолёта. Юлиана была пристёгнута к креслу. У неё была сломана ключица. Её мать погибла вместе с остальными пассажирами. Взяв с собой пакет конфет и стараясь не думать о маме, Юлиана отправилась в путь. Десять дней она брела по джунглям, вдоль ручейков и рек, следуя когда-то услышанному совету отца-биолога “потерявшись в джунглях, ты выйдешь к людям, следуя за течением воды”.

Она обходила крокодилов и колотила палкой по мелководью, чтобы распугать скатов. Где-то споткнувшись, потеряла туфлю. В конце из одежды у неё осталась только рваная мини-юбка. На десятый день она увидела каноэ. Ей потребовалось несколько часов, чтобы вскарабкаться по береговому склону до хижины, где на следующий день её обнаружила бригада лесорубов.

По статистике службы ACRO, фиксирующей все авиакатастрофы, с 1940 по 2008 в результате крушений погибло 118 934 человека. Выжило - лишь 157.

Из этих счастливчиков 42 - выжило после падения с высоты более 3 километров.

В 1959-1962 годах было построено несколько стратостатов, предназначенных для испытания космических и авиационных скафандров и парашютных систем для приземления с большой высоты. Такие стратостаты были, как правило, оборудованы открытыми гондолами, от разрежённой атмосферы стратонавтов защищали скафандры. Эти испытания оказались предельно опасны. Из шести стратонавтов трое погибли, а один потерял сознание во время свободного падения.

Американский проект «Excelsior» включал три высотных прыжка из стратостатов объёмом 85 000 м³ с открытой гондолой, которые выполнил Джозеф Киттингер в 1959-1960 годах. Он испытывал компенсирующий гермокостюм со шлемом и двухступенчатый парашют системы Бопре, состоящий из стабилизационного парашюта диаметром 2 м, который должен предохранять парашютиста от вращения при полёте в стратосфере и основного парашюта диаметром 8,5 м для приземления. В первом прыжке с высоты 23300 м из-за раннего раскрытия стабилизационного парашюта тело пилота начало вращаться с частотой около 120 об/мин и он потерял сознание. Лишь благодаря автоматической системе раскрытия основного парашюта Киттингеру удалось спастись. Второй и третий полёты прошли более удачно, несмотря на то, что в третьем произошла разгерметизация правой перчатки и рука пилота сильно распухла. В третьем полёте, который состоялся 16 августа 1960 Киттингер установил сразу несколько рекордов - высоты полёта на стратостате, высоты свободного падения и скорости, развитой человеком без использования транспорта. Падение продолжалось 4 минуты 36 секунд, за которые пилот пролетел 25816 м и на некоторых участках развил скорость около 1000 км/ч, вплотную приблизившись к скорости звука.

Проект «StratoLab» включал четыре субстратосферных полёта и пять стратосферных, их которые четыре - с герметичной гондолой и один (StratoLab V) с открытой. Полёт StratoLab V «Lee Lewis» состоялся 4 мая 1961. Стратостат объёмом свыше 283 000 м³ был запущен с авианосца Antietam в Мексиканском заливе и через 2 часа 11 минут после старта достиг рекордной высоты 34668 м. Стратонавты Малколм Росс и Виктор Претер были одеты в космические скафандры. После успешного приводнения Претер погиб, не удержавшись на трапе во время подъёма на вертолёт и захлебнувшись. Он раньше времени разгерметизировал скафандр, так как был уверен, что опасность миновала.

В СССР для подобных испытаний использовался стратостат СС - «Волга», созданный ОКБ-424 (ныне ГУП «Долгопрудненское конструкторское бюро автоматики») под руководством Гудкова М. И., герметичная гондола которого имитировала спускаемый аппарат космического корабля, была снабжена устройством для стравливания воздуха и устройством катапультирования вниз (первый беспилотный полёт в 1959 г.) . 1 ноября 1962 года состоялся пилотируемый рекордный полёт с парашютными прыжками. Стратостат с испытателями Евгением Андреевым и Петром Долговым достиг высоты 25458 м, после чего гондола была разгерметизирована и Андреев катапультировался. Он пролетел в свободном падении около 24500 м и благополучно приземлился. Ему принадлежит зарегистрированный рекорд высоты свободного падения (рекорд Киттингера был установлен с использованием стабилизационного парашюта). Долгов прыгнул с высоты 28640 м, но случайно разгерметизировал шлем при катапультировании из-за удара о выступающий элемент кабины и погиб. Стратонавтам было присвоено звание героя Советского Союза (Долгову посмертно).
Стратостат СС -«Волга» активно использовался не только для рекордных парашютных прыжков, но и для вполне обычных испытательных полётов по отработке систем спасения, жизнеобеспечения и др. узлов и систем, изучении состояния организма при полёте. На нём разными пилотами-испытателями (например, будущим лётчиком-космонавтом СССР, майором В. Г. Лазаревым) налётано десятки часов каждым.

В 1965-1966 американский парашютист Николас Пиантанида предпринял три попытки побить рекорды, установленные Андреевым и Киттингером, инициировав проект «StratoJump». 22 октября 1965 состоялась первая попытка, длившаяся около 30 минут. На высоте около 7 км баллон был повреждён и пилот спасся на парашюте. Во время второго полёта 2 февраля 1966 стратостат поднялся на высоту 37600 м, установив не побитый до сих пор рекорд. Но Пиантанида не смог отключиться от установленного в гондоле баллона с кислородом и перейти на автономную систему скафандра, поэтому прыжок пришлось отменить. По команде с земли гондола отделилась от стратостата и успешно опустилась на парашюте. 1 мая 1966 состоялся третий полёт, который закончился трагедией - при подъёме на высоте 17500 м произошла разгерметизация скафандра и парашютист погиб.

3 сентября 2003 была произведена попытка установить новый рекорд высоты полёта стратостата. Баллон QinetiQ-1 высотой 381 м и объёмом около 1 250 000 м³, изготовленный британской фирмой QinetiQ, должен был поднять открытую гондолу с двумя пилотами, одетыми в космические скафандры, на высоту 40 км. Попытка завершилась провалом - через некоторое время после начала наполнения баллона гелием в оболочке обнаружилось повреждение и полёт был отменён.