Спорт, питание, похудение, упражнение

Расслабление мышц фактор расслабления биохимия. Особенности строения гладких мышц

С труктура мышечного волокна и его сокращение.

Мышечное сокращение в живой системе это механохимический процесс. Современная наука считает его самой совершенной формой биоло­гической подвижности. Сокращение мышечного волокна биологические объекты «разработали» как способ перемещения в пространстве (что значительно расширило их жизненные возможности).

Мышечному сокращению предшествует фаза напряжения, которая является результатом работы, осуществляемой путем преобразования энергии химической в механическую напрямую и с хорошим КПД (30-50 %). Накопление потенциальной энергии в фазе напряжения приводит мышцу в состояние возможного, но еще не реализованного сокращения.

У животных и человека имеются (а человек считает, что уже и неплохо изучены) два основных типа мышц: поперечнополосатые и гладкие. Поперечнополосатые мышцы или скелетные прикреплены к костям (кроме поперечнополосатых волокон сердечной мышцы, отличающихся от скелетных мышц и по составу). Гладкие мышцы поддерживают ткани внутренних органов и кожу и образуют мускулатуру стенок кровеносных сосудов, а также кишечника.

В биохимии спорта изучают ске­летные мышцы , «конкретно отвечающие» за спортивный результат.

Мышца (как макро образование, принадлежащее макро объекту) состоит из отдельных мышечных волокон (микро образований). В мышце их тысячи, соответственно, мышечное усилие – величина интегральная, суммирующая сокращения множества отдельных волокон. Различают мышечные волокна трех типов: белые быстросокращающиеся, промежуточные и красные медленно сокращающиеся. Типы волокон различаются механиз­мом их энергетического обеспечения и управляются разными мотонейронами. Типы мышц различаются соотношением типов волокон.

Отдельное мышечное во­локно – нитевидное бес­клеточное образование – симпласт . На клетку симпласт «не похож»: имеет сильно вытянутую форму в длину от 0,1 до 2-3 см, в портняжной мышце до 12 см, и толщину – от 0,01 до 0,2 мм. Симпласт окружен оболоч­кой – сарколеммой, к поверхности которой подходят окон­чания нескольких двигательных нервов. Сарколемма – это двухслойная липопротеидная мембрана (толщиной 10 нм), укрепленная сетью коллагеновых волокон. При расслаблении после сокращения они возвращают симпласт в исходную форму (рис. 4).

Рис. 4. Отдельное мышечное волокно.

На наружной поверхности сарколеммы-мембраны всегда поддерживается электрический мембранный потенциал, даже в состоянии покоя он равен 90-100 мВ. Наличие потенциала является необходи­мым условием для управления мышечным волокном (как аккумулятор для авто). Потенциал создается за счет активного (значит с затратами энергии – АТФ) переноса веществ через мембрану и ее избирательной проницаемости (по принципу – «кого хочу – того и впущу, или выпущу»). Поэтому внутри симпласта некоторые ионы и молекулы накапливаются в большей концентрации, чем снаружи.

Сарколемма хорошо проницаема для ионов К + – они накап­ливаются внутри, а наружу выводятся ионы Nа + . Соответственно, концентрация ионов Nа + в межклеточной жидкости больше, чем концентрация ионов К + внутри симпласта. Смещение pH в кислую сторону (при образовании молочной кислоты, например) увеличивает проницаемость сарколеммы для высокомолекулярных веществ (жир­ных кислот, белков, полисахаридов), которые в обычном состоянии через нее не проходят. Легко проходят (диффундируют) через мембрану низкомолекулярные вещества (глюкоза, молоч­ная и пировиноградная кислоты, кетоновые тела, аминокислоты, короткие пептиды).

Внутреннее содержимое симпласта – саркоплазма – этоколлоидная белковая структура (по консистенции напоминает желе). Во взвешенном состоянии в ней находятся включения гликогена, жировые капли, в нее «встроены» различные субкле­точные частицы: ядра, митохондрии, миофибриллы, рибосомы и другие.

Сократительный «механизм» внутри симпласта – миофибриллы. Это тонкие(Ø 1 – 2 мкм) мышечные нити, длинные – почти равны длине мышечного волокна. Установлено, что в симпластах нетренированных мышц миофибриллы располагаются не упорядоченно, вдоль симпласта, но с разбросом и отклонениями, а в тренированных – миофибириллы ориентированы по продольной оси и еще сгруппированы в пучки как в канатах. (При прядении искусственных и синтетических волокон макромолекулы полимера сначала располагаются не строго вдоль волокна и их, как спортсменов, «упорно тренируют» – ориентируют правильно – по оси волокон, путем многократной перемотки: смотри длиннющие цеха на ЗИВе и «Химволокно»).

В световой микроскоп можно наблюдать, что миофибриллы действительно «поперечно полосатые». В них чередуются светлые и темные участки – диски. Темные диски А (анизотропные) белка содержат больше, чем светлые диски I (изотропные). Светлые диски пересечены мембранами Z (телофрагмами) и участок миофибриллы между двумя Z -мембранами называется саркомером . Миофибрилла состоит из 1000 – 1200 саркомеров (рис. 5).

Сокращение мышечного волокна в целом складывается из сокращений единичных саркомеров. Сокращаясь каждый отдельно,саркомерывсе вместе создают интегральное усилие и выполняют механическую работу по сокращению мышцы.

Дли­на саркомера меняется от 1,8 мкм в покое до 1,5 мкм при умеренном и до 1 мкм при полном сокращении. Диски саркомеров, темных и светлых, заключают в себе протофибриллы (миофиламенты) – белковые нитевидные структуры. Они встречаются двух типов: толстые (Ø – 11 – 14 нм, длиной – 1500 нм) и тонкие (Ø – 4 – 6 нм, длиной – 1000 нм).

Рис. 5. Участок миофибриллы.

Светлые диски (I ) состоят только из тонких протофибрилл, а темные диски (А ) – из прото­фибрилл двух видов: тонких, скрепленных между собой мембраной, и толстых, сосредоточенных в отдельной зоне (H ).

При сокращении саркомера длина темного диска (А ) не изменяется, а длина светлого диска (I ) уменьшается, поскольку тонкие протофибриллы (светлых дисков) вдвигаются в промежутки между толстыми (темных дисков). На поверхности протофибрилл расположены особые выросты – спайки (толщиной около 3 нм). В «рабочем положении» они образуют зацепление (поперечными мостиками) между толстыми и тонкими нитями протофибрилл (рис. 6). При сокращении Z -мембраны упираются в концы толстых про­тофибрилл, а тонкие протофибриллы могут даже накручиваться вокруг толстых. При сверхсокращении концы тонких нитей в центре саркомера заворачиваются, а концы толстых протофибрилл – сминаются.

Рис. 6. Формирование спайки между актином и миозином.

Энергообеспечение мышечных волокон осуществляется с помощью саркоплазматической сети (она же – саркоплазматический ретикулум ) – системы продольных и попе­речных трубочек, мембран, пузырьков, отсеков.

В саркоплазматической сети организованно и управляемо протекают различные биохимические процессы, сеть охватывает все вместе и каждую миофибриллу отдельно. Ретикулум включает рибосомы, они осуществляют синтез белков, и митохондрии – «клеточные энергетические станции» (по определению школьного учебника). Фактически митохондрии встроены между миофибриллами, что создает оптимальные условия для энергетического обеспечения процесса сокращения мышцы. Установлено, что в тренированных мышцах число митохондрий больше, чем в тех же нетренированных.

Химический состав мышц.

Вода с оставляет70 – 80 % веса мышцы.

Белки . На долюбелковприходится от17 до 21 % веса мышцы: примерно 40% всех мышечных белков сосредоточены в миофибриллах, 30% – в саркоплазме, 14% – в митохондриях, 15% – в сарколемме, остальные в ядрах и других клеточных орга­неллах.

В мышечной ткани содержатся ферментативные белки миогеновой группы, миоальбумин – запасной белок (его содержание с возрастом постепенно сни­жается), красный белок миоглобин – хромопротеид (его называют мышечным гемоглобином, он связывает кислорода больше, чем гемоглобин крови), а также глобулины, миофибриллярные белки. Болееполовины миофибриллярных белков приходится на миозин , около четверти – актин , остальное – тропомиозин, тропонин, α- и β-актинины, ферменты креатинфосфокиназа , дезаминаза и другие. В мышечной ткани имеются ядерные белки – нуклеопротеиды, митохондриальные белки. В белках стромы, оплетающей мышечную ткань, – основная часть – коллаген и эластин сарколеммы, а также миостромины (связанные с Z -мембранами).

Во дорастворимые азотистые соединения. В скелетных мышцах человека содержатся различные водорастворимые азотистые соединения: АТФ, от 0,25 до 0,4 %, креатинфосфат (КрФ) – от 0,4 до 1 % (при тренировке его количество увеличивается), продукты их распада – АДФ, АМФ, креатин. Кроме того, в мышцах содержатся дипептид карнозин, около 0,1 – 0,3 %, участвующий в восстановлении работоспособности мышц при утомлении; карнитин, отвечающий за перенос жирных кислот через кле­точные мембраны; амино­кислоты, и среди них преобладает глютаминовая (не этим ли объясняется применение глютамата натрия, читайте состав приправ, для придания пище вкуса мяса); пуриновые основания, мочевина и аммиак. Скелетные мышцы содержат также около 1,5 % фосфатидов, которые участвуют в тканевом дыхании.

Безазотистые соединения . В мышцах содержатся углеводы, гликоген и продукты его обмена, а также жиры, холестерин, кетоновые тела, минеральные соли. В зависи­мости от пищевого рациона и степени тренированности количество гликогена варьирует от 0,2 до 3 %, при этом тренировки увеличивают массу свободного гликогена. Запасные жиры в мышцах накапливаются в ходе тренировок на выносливость. Связанный с белками жир составляет примерно 1%, а в мембранах мышечного волокна может со­держаться до 0,2 % холестерина.

Минеральные вещества. Минеральные вещества мышечной ткани составляют примерно 1 – 1,5 % от веса мышцы, это, в основном, соли калия, натрия, кальция, магния. Минеральные ионы, такие как К + , Nа + , Мg 2+ , Са 2+ , Сl - , НР0 4 ~ играют важнейшую роль в биохимических процессах при сокращении мышц (их включают в состав «спортивных» добавок и минеральной воды).

Биохимия мышечных белков.

Основной сократительный белок мышц – миозин относится кфибриллярным белкам (Молекулярная масса около 470000). Важная особенность миозина – способность образовывать комплексы с молекулами АТФ и АДФ (что позволяет «отбирать» энергию у АТФ), и с белком – актином (что дает возможность удерживать сокращение).

Молекула миозина имеет отрицательный заряд и специфически взаимодействует с ионами Са ++ и Мg ++ . Миозин в присутствии ионов Са ++ ускоряет гидролиз АТФ, и, таким образом, проявляет ферментативную аденозинтрифосфатную активность:

миозин-АТФ +H2O → миозин + АДФ + H 3 PO 4 + работа (энергия 40 кДж/моль)

Белок миозин образован двумя одинаковыми, длинными полипептидными α-цепями, закрученными как двойная спираль, рис.7. Под действием протеолитических фер­ментов молекула миозина распадается на две части. Одна из ее частей способна связываться посредством спаек с актином, образуя актомиозин. Эта часть отвечает за аденозинтрифосфатазную активность, которая зависит от рН среды, оптимум – рН 6,0 - 9,5, а также концентрации КСl. Комплекс – актомиозин распадается в присутствии АТФ, но в отсутствие свободной АТФ он стабилен. Вторая часть молекулы миозина тоже состоит из двух перекрученных спиралей, за счет электростатического заряда они связывают молекулы миозина в протофибриллы.

Рис. 7. Структура актомиозина.

Второй важнейший сократительный белок – актин (рис. 7). Он может сущест­вовать в трех формах: мономерной (глобулярной), димерной (гло­булярной) и полимерной (фибриллярной). Мономерный глобуляр­ный актин, когда его полипептидные цепи плотно уложены в компактную сферическую структуру, связан с АТФ. Расщепляя АТФ, мономеры актина – А, образуют димеры, включающие АДФ: A – АДФ – A. Полимерный фибриллярный актин – двойная спираль, состоящая из димеров, рис. 7.

Актин глобулярный переходит в фибриллярный в присутствии ионов К + , Мg ++ и в живых мышцах преобладает фибриллярный актин.

В миофибриллах содержится значительное количество белка тропомиозина , который со­стоит из двух – α-спиральных полипептидных цепей. В покоящихся мышцах он образует комплекс с актином и блокирует его активные центры, поскольку актин способен связываться с ионами Са ++ они и снимают эту блокаду.

На молекулярном уровне толстые и тонкие протофибриллы саркомера взаимодействуют электростатически, так как имеют особые участки – выросты и выступы, где формируется заряд. На участке А-диска толстые протофибриллы построены из пучка продольно ориентированных молекул миозина, тонкие протофибриллы располагаются радиально вокруг толстых, образуя структуру, похожую на многожильный кабель. В центральной М-полосе толстых протофибрилл миозиновые молекулы соеди­нены своими «хвостами», а их выступающие «головы» – выросты направлены в разные стороны и расположены по пра­вильным спиральным линиям. Фактически напротив них в спиралях фибриллярного актина на определенном расстоянии друг от друга встроены мономерные глобулы актина тоже выступающие. В каждом выступе имеется активный центр, за счет которого возмож­но образование спаек с миозином. Z-мембраны саркомеров (как чередующиеся постаменты) скрепляют между собой тон­кие протофибриллы.

Биохимия сокращения и расслабления.

Циклические биохимические реакции, происходящие в мышце при сокращении, обеспечивают повторяющееся образо­вание и разрушение спаек между «головками» – выростами миозиновых моле­кул толстых протофибрилл и выступами – активными центрами тонких протофибрилл. Работа по образованию спайки и продвижению актиновой нити вдоль миозиновой требует как четкого управления, так и значительных затрат энергии. Реально в момент сокра­щения волокна образуется около 300 спаек в минуту в каждом активном центре – выступе.

Как мы уже отметили ранее, только энергия АТФ может быть непосредственно преобразована в механическую работу мышечного сокращения. Гидролизованная ферментативным центром миозина АТФ образует со всем белком миозином комплекс. В комплексе АТФ-миозин, насыщенный энергией миозин, изменяет свою структуру, а с ней и внешние «габариты» и совершает, таким способом, механическую работу по укорочению выроста миозиновой нити.

В покоящейся мышце миозин все равно связан с АТФ, но через ионы Мg ++ без гидролитического расщепления АТФ. Образованию спаек миозина с актином в покое препятствует комплекс тропомиозина с тропонином, блокирующий активные центры актина. Блокада удерживается и АТФ не расщепляется пока связаны ионы Са ++ . Когда к мышечному волокну приходит нервный импульс, выделяется пе­редатчик импульсов – нейрогормон ацетилхолин. Ионами Nа + отрицатель­ный заряд на внутренней поверхности сарколеммы нейтрализуется и происходит ее деполяризация. При этом ионы Са ++ освобождаются и связываются с тропонином. В свою очередь тропонин теряет заряд, отчего активные центры – выступы актиновых нитей деблокируются и возник­ают спайки между актином и миозином (поскольку электростатическое отталкивание тонких и тол­стых протофибрилл уже снято). Теперь в присутствии Са ++ АТФ взаимодействует с центром фермен­тативной активности миозина и расщепляется, а энергия преобразующегося комплекса используется для сокращения спайки. Цепь описанных выше молекулярных событий похожа на электрический ток, подзаряжающий микроконденсатор, его электрическая энергия тут же на месте преобразуется в механическую работу и нужно снова делать подзарядку (если хочешь двигаться дальше).

После разрыва спайки АТФ не расщепляется, а вновь образует фер­мент-субстратный комплекс с миозином:

М–А + АТФ -----> М – АТФ + А или

М–АДФ–А + АТФ ----> М–АТФ + А + АДФ

Если в этот момент поступает новый нервный импульс, то реак­ции «подзарядки» повторяются, если следующий импульс не поступает, происходит расслабление мышцы. Возвращение сокращенной мышцы при расслаблении в исход­ное состояние обеспечивается упругими силами белков мышечной стромы. Выдвигая современные гипотезы мышечного сокращения, ученые предполагают, что в момент сокращения происходит скольжение актиновых нитей вдоль миозиновых, а также возможно их укорочение за счет изменения пространственной структуры сократительных белков (изменения формы спирали).

В состоянии покоя АТФ оказывает пластифицирующий эффект: соединяясь с миозином она препятствует образованию его спаек с актином. Расщепляясь при сокращении мышцы, АТФ обеспечивает энергией процесс укорочения спайки, а также работу «кальциевого насоса» – подачу ионов Са ++ . Расщепление АТФ в мышце происходит с очень большой скоростью: до 10 микромолей на 1 г мышцы в минуту. Так как общие запасы АТФ в мышце невелики (их может хватить только на 0,5-1 сек работы с максимальной мощ­ностью), для обеспечения нормальной деятельности мышц АТФ должна восстанавливаться с такой же скоростью, с какой она рас­щепляется .

Механизм мышечного сокращения

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецегггором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна, и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает потенциал действия (ПД), который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 °С.

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта, и образованию инозитолтри- фосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са 2+ из цистерн и повышению внутриклеточной концентрации Са 2+ с 107 до 105 М. Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са 2+ , составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический - повышение внутриклеточной концентрации Са 2+ , т. е. электрохимическое преобразование.

При повышении внутриклеточной концентрации ионов Са 2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са 2+ . Следовательно, участие ионов Са 2 ~ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.

Следующим этапом электромеханического сопряжения является присоединение головки поперечного мостика к актиновому филаменту, к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хсмомеханическое преобразование.

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей.

Механизм мышечного расслабления

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са 2+ .Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм - кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса происходит также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления.

Кроме того, после мышечных сокращений тонкие протофибриллы стремятся вернуться в свое прежнее положение за счет упругих свойств.

Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация

АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.

Особенности строения гладких мышц

Гладкие мышцы внутренних органов по характеру иннервации, возбуждения и сокращения существенно отличаются от скелетных. Волны возбуждения и сокращения протекают в гладких мышцах в очень замедленном темпе. Развитие состояния "неутомляемого" тонуса гладких мышц связано, как и в тонических скелетных волокнах, с замедленностью сократительных волн, сливающихся друг с другом даже при редких ритмических раздражениях. Для гладких мышц характерна также способность к автоматизму, т. е. к деятельности, не связанной с поступлением в мышцы нервных импульсов из центральной нервной системы. Установлено, что способностью к ритмическому самопроизвольному возбуждению и сокращению обладают не только нервные клетки, имеющиеся в гладких мышцах, но и сами гладкомышечные клетки.

Своеобразие сократительной функции гладких мышц позвоночных животных определяется не только особенностями их иннервации и гистологического строения, но и спецификой их химического состава: более низким содержанием контрактильных белков (актомиозина), макроэргических соединений, в частности АТФ, низкой АТФ-азной активностью миозина, наличием в них водорастворимой модификации актомиозина - тоноактомиозина и т. д.

Существенное значение для организма имеет способность гладких мышц изменять длину без повышения напряжения (наполнение полых органов, например мочевого пузыря, желудка и др.).

Новосибирский государственный педагогический университет

Реферат по предмету

«Биохимия»

«Биохимия мышечного сокращения»

Выполнил: студент 3 курса ЕГФ

отделения «Валеология», гр. 1А

Литвиченко Е.М.

Проверил: Сайкович Е.Г.

г. Новосибирск 2000 г.

Интерес биохимии к процессам происходящим в сокращающихся мышцах основан не только на выяснении механизмов мышечных болезней, но и что может быть даже более важным – это раскрытие механизма превращения электрической энергии в механическую, минуя сложные механизмы тяг и передач.


Для того, чтобы понять механизм и биохимические процессы происходящие в сокращающихся мышцах, необходимо заглянуть в строение мышечного волокна. Структурной единицей мышечного волокна являются Миофибриллы – особым образом организованные пучки белков, располагающиеся вдоль клетки. Миофибриллы в свою очередь построены из белковых нитей (филаментов) двух типов – толстых и тонких. Основным белком толстых нитей является миозин , а тонких – актин . Миозиновые и актиновые нити – главный компонент всех сократительных систем в организме. Электронно-микроскопическое изучение показало строго упорядоченное расположение миозиновых и актиновых нитей в миофибрилле. Функциональной единицей миофибриллы является саркомер – участок миофибриллы между двумя Z-пластинками. Саркомер включает в себя пучок миозиновых нитей, серединой сцепленных по так называемой М-пластине, и проходящих между ними волокон актиновых нитей, которые в свою очередь прикреплены к Z-пластинам.

Сокращение происходит путем скольжения тонких актиновых и толстых миозиновых нитей навстречу друг другу или вдвигания актиновых нитей между миозиновыми в направлении М-линии. Максимальное укорочение достигается тогда, когда Z-пластинки, к которым прикреплены актиновые нити, приближаются к концам миозиновых нитей. При сокращении саркомер укорачивается на 25-50 %.

Саркоплазма, вмещающая миофибриллы, пронизана между ними сетью цистерн и трубочек эндоплазматического ретикулума, а также системой поперечных трубочек, которые тесно контактируют с ним, но не сообщаются.

Строение миозиновых нитей.

Миозиновые нити образованы белком миозином, молекула которого содержит две идентичные тяжелые полипептидные цепи с молекулярной массой около 200 000 и четыре легкие цепи (около 20 000). Каждая тяжелая цепь на большей части своей длины имеет конформацию a-спирали, и обе тяжелые цепи скручены между собой, образуя часть молекулы в форме палочки. С противоположных концов каждой цепи присоединены по две легкие цепи, вместе с глобулярной формой этих концов цепи они образуют «головки» молекул. Палочкообразные концы молекул могут соединяться друг с другом продольно, образуя пучки, головки молекул при этом располагаются кнаружи от пучка по спирали. Кроме того, в области М-линии пучки соединяются между собой «хвост в хвост». Каждая миозиновая нить содержит около 400 молекул миозина.


молекулы актина

молекулы тропонина молекулы тропомиозина

Другой белок, входящий в актиновые нити – тропомиозин – имеет форму палочек, он располагается вблизи желобков спиральной ленты фибриллярного актина, вдоль нее. Размер его в длину в 8 раз больше размера глобулярного актина, потому одна молекула тропомиозина контактирует сразу с семью молекулами актина и концами связаны друг с другом, образуя третью продольную спирально закрученную цепочку.

Третий белок актиновых нитей – тропонин – состоит из трех разных субъединиц и имеет глобулярную форму. Он нековалентно связан и с актином и тропомиозином таким образом, что на одну молекулу тропонина приходится одна молекула тропомиозина, кроме того одна из его субъединиц содержит Ca- связывающие центры. Тонкие актиновые нити прикреплены к Z-пластинам, тоже белковым структурам.

Механизм сокращения мышцы.

Сокращение мышц есть результат укорочения каждого саркомера, максимальное укорочение саркомера достигается тогда, когда Z-пластинки, к которым прикреплены актиновые нити, приближаются вплотную к концам миозиновых нитей.

В сокращении мышц у актиновых и миозиновых нитей свои роли: миозиновые нити содержат активный центр для гидролиза АТФ, устройство для превращения энергии АТФ в механическую энергию, устройство для сцепления с актиновыми нитями и устройства для восприятия регуляторных сигналов со стороны актиновых нитей, актиновые нити имеют механизм сцепления с миозиновыми нитями и механизм регуляции сокращения и расслабления.

Сокращение мышцы включается потенциалом действия нервного волокна, который через нервно-мышечный синапс при посредстве медиатора трансформируется в потенциал действия сарколеммы и трубочек Т-системы. Ответвления трубочек окружают каждую миофибриллу и контактируют с цистернами саркоплазматического ретикулума. В цистернах в значительной концентрации содержится Ca . Потенциал действия, поступающий по трубочкам, вызывает высвобождение ионов Ca 2+ из цистерн саркоплазматического ретикулума. Ионы Ca 2+ присоединяются к Сa-связывающей субъединице тропонина. В присутствии ионов Ca 2+ на мономерах актиновых нитей открываются центры связывания миозиновых головок, причем по всей системе тропонин – тропомиозин – актин. Как результат этих изменений – миозиновая головка присоединяется к ближайшему мономеру актина.

Головки миозина обладают высоким сродством к АТФ, так что в мышце большинство головок содержит связанный АТФ. Присоединение головки миозина к актину, активирует АТФ-азный центр, АТФ гидролизуется, АДФ и фосфат покидают активный центр, что приводит к изменению конформации миозина: возникает дополнительное напряжение, стремящееся уменьшить угол между головкой и хвостом молекулы миозина, т.е. наклонить головку в направлении М-линии. Поскольку миозиновая головка соединена с актиновой нитью, то, наклоняясь в сторону М-линии она смещает в этом же направлении и актиновую нить.

АДФ, высвобождаемые с множества головок проходят следующую трансформацию:

2 АДФ ® АТФ + АМФ

Освобожденные от АТФ головки снова притягивают к себе АТФ в связи с его высоким сродство, о чем уже упоминалось выше, присоединение АТФ уменьшает сродство миозиновой головки с актиновыми нитями и миозин возвращается в исходное состояние. Далее повторяется весь цикл с самого начала, но поскольку в предыдущем цикле актиновая нить за счет своего движения приблизила Z-пластинку, то та же самая головка миозина присоединяется уже к другому мономеру актина ближе к Z-пластинке.


Сотни миозиновых головок каждой миозиновой нити работают одновременно, втягивая таким образом актиновую нить.

Источники энергии мышечного сокращения.

Скелетная мышца, работающая с максимальной интенсивностью, потребляет в сотни раз больше энергии, чем покоящаяся, причем переход от состояния покоя к состоянию максимальной работы происходит за доли секунды. В связи с этим у мышц совсем по-другому построен механизм изменения скорости синтеза АТФ в очень широких пределах.

Как уже упоминалось при мышечном сокращении большое значение имеет процесс синтеза АТФ из АДФ, высвобождаемых из миозиновых головок. Это происходит при помощи, имеющегося в мышцах высокоэнергетического вещества креатинфосфата , которое образуется из креатина и АТФ при действии креатинкиназы :

C-NH 2 C-NH-PO 3 H 2

N-CH 3 +АТФ ó N-CH 3 + АДФ

Креатин Креатинфосфат

Эта реакция легко обратима и идет анаэробно, что обеспечивает быстрое включение мышц в работу на ранних этапах. При продолжении нагрузки роль такого энергетического обеспечения снижается, а на его замену приходят гликогеновые механизмы обеспечения большим количеством АТФ.

Библиография:

Г. Дюга, К. Пенни «Биоорганическая химия», М., 1983

Д. Мецлер «Биохимия», М., 1980

А. Ленинджер «Основы биохимии», М., 1985

ГЛАВА 3. ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ МЫШЦ

3.1. Механизм мышечного сокращения

Несмотря на полифункциональность мышечной системы, основной функцией мышц является осуществление двигательного акта, то есть сокращение и расслабление. Мышечное сокращение является сложным механохимическим процессом, в ходе которого происходит превращение химической энергии гидролитического расщепления АТФ в механическую. Рассмотрим структурную основу процесса сокращения поперечно-полосатых мышц позвоночных, поскольку этот процесс изучен наиболее полно. Как отмечалось, сократительная система поперечно-по­лосатой мышцы состоит из перекрывающихся белковых нитей, которые скользят относительно друг друга (см. рис. 9, А).

Согласно модели, предложенной Э.Хаксли и Р.Нидергерке, а также X.Хаксли и Дж.Хенсон, при сокращении миофибрилл одна система нитей проникает в другую, то есть нити начинают как бы скользить друг по другу, что и является причиной мышечного сокращения .

Сокращение происходит за счет энергии, освобождающейся при гид­ролизе АТФ. В поперечно-полосатой мышце сокращение зависит от кон­центрации ионов Са 2+ , которая, в свою очередь, регулируется саркоплаз­матическим ретикулумом – специализированной системой мембран, накапливающей Са 2+ в состоянии покоя и высвобожающей его при воздействии на мышечное волокно нервного импульса (см. рис. 11, А, Б) .

1) миозиновая «головка» может гидролизовать АТФ до АДФ и Н 3 РО 4 (P i), но не обеспечивает освобождения продуктов гидролиза. Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис. 10, а);

3) это взаимодействие обеспечивает высвобождение АДФ и Н 3 РО 4 из актин-миозинового комплекса. Актомиозиновая связь имеет наимень­шую энергию при величине угла 45°, поэтому изменяется угол миозина с осью фибриллы с 90° на 45° (примерно) и происходит продвижение актина (на 10–15 нм) в направлении центра саркомера (см. рис. 10, в) («гребок» согласно модели весельной лодки на рис. 9 Б);

Рис. 9. Организация скелетных мышц позвоночных

и механизм сокращения мышечных волокон

4) новая молекула АТФ связывается с комплексом миозин-F-ак­тин (см. рис. 10, г);

5) комплекс миозин – АТФ обладает низким сродством к актину, и поэтому происходит отделение миозиновой (АТФ) «головки» от F-актина. Последняя стадия и есть собственно расслабление, которое отчетливо за­висит от связывания АТФ с актин-миозиновым комплексом (см. рис. 10, д). Затем цикл возобновляется .

Рис. 10. Биохимический цикл мышечного сокращения

Цикл повторяется до тех пор, пока имеется АТФ. Каждый «гребок» 500 миозиновых «головок» толстого филамента вызывает смещение на 10 нм. Во время сильных сокращений частота «гребков» составляет примерно 5 раз в секунду. При каждом цикле гидролиза АТФ «головки» миозина взаимодействуют с новыми молекулами актина, за счет чего и происходит взаимное скольжение миозиновых и актиновых филаментов, то есть сокращение мышечного волокна .

3.2. Регуляция сокращения и расслабления мышц

Сокращение любых мышц происходит по общему механизму, опи­санному ранее. Мышечные волокна разных органов могут обладать различными молекулярными механизмами регуляции сокращения и расслаб­ления, однако всегда ключевая регуляторная роль принадлежит ионам Са 2+ . Установлено, что миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться в его присутствии лишь при наличии в среде определенных концентраций ионов кальция. Наибольшая сократительная активность наблюдается при концентрации ионов Са 2+ около 10 –6 –10 –5 М. При понижении концентрации до 10 –7 М или ниже мышечные волокна теряют способность к укорочению и развитию напряжения в присутствии АТФ .

По современным представлениям, в покоящейся мышце (в миофи­бриллах и межфибриллярном пространстве) концентрация ионов Са 2+ поддерживается ниже пороговой величины в результате связывания их структурами (трубочками и пузырьками) саркоплазматической сети и так называемой Т-системой при участии особого Са 2+ -связывающего белка, получившего название кальсеквестрина, входящего в состав этих структур .

Связывание ионов Са 2+ разветвленной сетью трубочек и цистерн саркоплазматической сети не является простой адсорбцией. Это активный физиологический процесс, который осуществляется за счет энергии, освобождающейся при расщеплении АТФ Са 2+ -зависимой АТФазой саркоплазматической сети. При этом наблюдается весьма своеобразная картина: скорость выкачивания ионов Са 2+ из межфибриллярного прос­транства стимулируется этими же ионами. В целом такой механизм получил название «кальциевая помпа» по аналогии с хорошо известным в физиологии натриевым насосом (см. рис. 11, Б).

Возможность пребывания живой мышцы в расслабленном состоянии при наличии в ней достаточно высокой концентрации АТФ объясняется снижением в результате действия кальциевой помпы концентрации ионов Са 2+ в среде, окружающей миофибриллы, ниже того предела, при котором еще возможны проявление АТФазной активности и сократимость актомиозиновых структур волокна. Быстрое сокращение мышечного волокна при его раздражении от нерва (или электрическим током) является результатом внезапного изменения проницаемости мембран и как следствие выхода из цистерн и трубочек саркоплазматической сети и Т-системы некоторого количества ионов Са 2+ в саркоплазму (см. рис. 11, А, Б) .

Как отмечалось, «чувствительность» актомиозиновой системы к ионам Са 2+ (то есть потеря актомиозином способности расщеплять АТФ и сокращаться в присутствии АТФ при снижении концентрации ионов Са 2+ до 10 –7 М) обусловлена присутствием в контрактильной системе (на нитях F-актина) белка тропонина, связанного с тропомиозином. В тропонин-тропомиозиновом комплексе ионы Са 2+ связываются именно с тропонином (С-субъединица тропонина по свойствам близка кальмодули-

Рис. 11. Регуляция сокращения мышечных волокон

ну). Связывание ионов Са 2+ вызывает конформационные изменения в молекуле тропонина, которые, по-видимому, приводят к сдвигу всего тропонин-тропомиозинового стержня и деблокировке активных центров актина, способных взаимодействовать с миозином с образованием сократительного комплекса и активной Mg 2+ -АТФазы. Это инициирует цикл мышечного сокращения (см. рис. 11 В) .

В продвижении актиновых нитей вдоль миозиновых, по данным Э.Хаксли, важную роль играют временно замыкающиеся между нитями поперечные мостики, которые являются «головками» миозиновых молекул. Итак, чем большее число мостиков прикреплено в данный момент к актиновым нитям, тем больше сила мышечного сокращения .

Наконец, если возбуждение прекращается, содержание ионов Са 2+ в саркоплазме снижается (кальциевая помпа), как следствие, комплекс Са 2+ с тропонином С диссоциирует, тропонин восстанавливает исходную конформацию, место связывания миозина на актине блокируется, то есть «головки» миозиновых нитей перестают прикрепляться к актиновым нитям. В присутствии АТФ мышца расслабляется и ее длина достигает исходной. Если прекращается поступление АТФ (аноксия, отравление дыхательными ядами или смерть), то мышца переходит в состояние окоченения. Почти все поперечные мостики толстых (миозиновых) нитей присоединены при этом к тонким актиновым нитям, следствием чего и является полная неподвижность мышцы .

ГЛАВА 4. БИОЭНЕРГЕТИКА МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИ

4.1. Общая характеристика систем и механизмов

энергообеспечения мышечной деятельности

Как показано в главе 3, непосредственным источником энергии при мышечной деятельности является АТФ. Освобождение энергии про­исходит при ферментативном гидролизе молекулы АТФ до АДФ и ортофосфата:

Ca 2+ -АТФаза

АТФ + Н 2 О АДФ + Н 3 РО 4 .

ΔQ = 7,3 ккал, или 30 кДж

Химическая энергия в процессе мышечного сокращения преобразу­ется в механическую работу мышц, а при расслаблении обеспечивает актив­ный транспорт Са 2+ в саркоплазматический ретикулум. Большое количес­тво АТФ расходуется в скелетных мышцах на работу Nа + -К + -АТФазы, ко­торая поддерживает определенную концентрацию ионов Na + и К + в мыш­це, создающих электрохимический потенциал на сарколемме .

Таким образом, для обеспечения мышечной клеткой своего сократительного аппарата достаточным количеством энергии в форме АТФ не­обходим непрерывный ресинтез этого соединения.

Содержание АТФ в мышцах незначительное и составляет около 5 ммоль ∙ кг -1 сырой массы ткани (0,25–0,40 %). Оно поддерживается на относительно постоянном уровне, так как повышение концентрации АТФ в мышцах вызывает угнетение АТФазы миозина, что препятствует образованию спаек между актиновыми и миозиновыми нитями в миофибриллах и сокращению мышц, а снижение ее ниже 2 ммоль ∙ кг -1 сырой массы ткани приводит к нарушению работы Са 2+ -насоса в ретикулуме и процесса расслабления мышц. Запасы АТФ в мышечных волокнах могут обеспечить выполнение интенсивной работы только в течение очень короткого времени – 0,5–1,5 с, или 3–4 одиночных сокращения максимальной силы. Дальнейшая мышечная работа осуществляется благодаря быстрому восстановлению (ресинтезу) АТФ из продуктов ее распада и такого количества энергии, которое выделилось при распаде:

АДФ + Н 3 РО 4 + ΔQ → АТФ .

Реакция присоединения фосфата называется фосфорилированием, а реакция переноса его с одного вещества на другое – перефосфорилированием .

Рис. 12. Энергетический обмен в мышечной ткани

Энергетическими источниками для ресинтеза АТФ в скелетных мышцах и других тканях выступают богатые энергией фосфатсодержащие вещества, которые присутствуют в тканях (креатинфосфат, АДФ) или образуются в процессе катаболизма гликогена, жирных кислот и других энергетических субстратов (например, метаболиты дифосфоглицериновая и фосфопировиноградная кислоты), а также энергия протонного (Н +) градиента на мембране митохондрий, образующаяся в результате аэробного окисления различных веществ .

В зависимости от того, с помощью какого биохимического процесса поставляется энергия для образования молекул АТФ, выделяют четыре механизма, или пути ресинтеза АТФ в тканях (см. рис. 12). Каждый механизм имеет свои метаболические и биоэнергетические особенности. В энергообеспечении мышечной работы используются разные ме­ханизмы в зависимости от интенсивности и длительности выполняемого упражнения .

Ресинтез АТФ может осуществляться в реакциях, протекающих без участия кислорода (анаэробные механизмы) или с участием вдыхаемого кислорода (аэробный механизм) .

В обычных условиях ресинтез АТФ в тканях происходит преимущественно аэробно, а при напряженной мышечной деятельности, ког­да доставка кислорода к мышцам затруднена, в тканях усиливаются и анаэробные механизмы ресинтеза АТФ. В скелетных мышцах человека выявлены три вида анаэробных и один аэробный путь ресинтеза АТФ (см. рис. 13).

К анаэробным механизмам относятся:

1) креатинфосфокиназный (фосфогенный или алактатный) механизм, обеспечивающий ресинтез АТФ за счет перефосфорилирования между креатинфосфатом и АДФ;

2) гликолитический (лактатный) механизм, обеспечивающий ресин­тез АТФ в процессе ферментативного анаэробного расщепления гликогена мышц или глюкозы крови, заканчивающегося образованием молоч­ной кислоты, поэтому и называется лактатным;

3) миокиназный механизм, осуществляющий ресинтез АТФ за счет реакции перефосфорилирования между двумя молекулами АДФ с участием фермента миокиназы (аденилаткиназы).

Рис. 13. Механизмы ресинтеза АТФ в мышцах

(в рамках представлены энергетические субстраты

и выделены названия механизмов)

Аэробный механизм ресинтеза АТФ включает в основном реакции окислительного фосфорилирования, протекаемые в митохондриях. Энер­гетическими субстратами аэробного окисления служат глюкоза, жирные кислоты, частично аминокислоты, а также промежуточные метаболиты гликолиза – молочная кислота, окисления жирных кислот – кетоновые тела .

Каждый механизм имеет разные энергетические возможности, которые характеризуются по следующим критериям оценки механизмов энергообразования: максимальная мощность, скорость развертывания, ме­таболическая емкость и эффективность. Максимальная мощность – это наибольшая скорость образования АТФ в данном метаболическом процессе. Она лимитирует предельную интенсивность работы, выполняемой за счет данного механизма. Скорость развертывания оценивается вре­менем достижения максимальной мощности данного пути ресинтеза АТФ от начала работы. Метаболическая емкость отображает общее количес­тво АТФ, которое может быть получено в данном механизме ресинтеза за счет величины запасов энергетических субстратов; емкость лимитирует объем выполняемой работы. Метаболическая эффективность – это та часть энергии, которая накапливается в макроэргических связях АТФ; она определяет экономичность выполняемой работы и оценивается общим значением коэффициента полезного действия (КПД), представляю­щего отношение всей полезно затраченной энергии к ее общему количеству, выделенному в данном метаболическом процессе .

Общий КПД при преобразовании энергии метаболических процессов в механическую работу (E м) зависит от двух показателей: а) эффективности преобразования выделяемой в ходе метаболических превраще­ний энергии в энергию ресинтезируемых макроэнергических фосфорных соединений (ATФ), то есть эффективности фосфорилирования (E ф); б) эффективности преобразования АТФ в механическую работу, то есть эффективности хемомеханического сопряжения (Е е):

E м = (E ф / Е е) × 100.

Эффективность хемомеханического сопряжения в процентах аэроб­ного и анаэробного метаболизма примерно одинакова и составляет 50 %, в то время как эффективность фосфорилирования наивысшая в алактатном анаэробном процессе – около 80 % и наименьшая – в анаэробном гликолизе – в среднем 44 %, в аэробном процессе она составляет примерно 60 % .

Сравнительная характеристика креатинфосфокиназного, гликолитического и аэробного механизмов энергообеспечения мышечной деятельности по оценочным критериям представлена в таблице 3.

Из таблицы 3 видно, что креатинфосфокиназный и гликолитический механизмы имеют большую максимальную мощность и эффективность образования АТФ, но короткое время удержания максимальной мощности и небольшую емкость из-за малых запасов энергетических субстратов. Аэробный механизм имеет почти в три раза меньшую максимальную мощность по сравнению с креатинфосфокиназным, но поддерживает ее в течение длительного времени, а также практически неисчерпаемую емкость благодаря большим запасам энергетических субстратов в виде углеводов, жиров и частично белков. Так, за счет запасов жиров организм может непрерывно работать в течение 7–10 дней, в то время как запасы энергетических субстратов анаэробных механизмов энергообразования менее значительные .

Учебное Документ

... УДК (470)(082) ББК ... издательская благотворительность М. П. Беляева. Отдельным сторонам издательской ... печатаются ... совета , на котором было принято решение продолжить деятельность в эмиграции. Не предаваясь иллюзиям по ... качестве учебного пособия . Его...

Конспект лекции | Резюме лекции | Интерактивный тест | Скачать конспект

» Структурная организация скелетной мышцы
» Молекулярные механизмы сокращения скелетной мышцы
» Сопряжение возбуждения и сокращения в скелетной мышце
» Расслабление скелетной мышцы
»
» Работа скелетной мышцы
» Структурная организация и сокращение гладких мышц
» Физиологические свойства мышц

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл, которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты.

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина. В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина, соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку-лами белка миозина. Каждая молекула миозина имеет головку и хвост. Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик.

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ). ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

• Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

• Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

• Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

• Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

• В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

• Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

• Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

• К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения.

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

• фаза укорочения (около 50 мс);

• фаза расслабления (около 50 мс).

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

• числом ДЕ, участвующих в сокращении;

• частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

• динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

• статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

• динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

• изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

• изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

• ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Структурная организация. Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения. При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц. Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость. Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза».

Таблица 7.1.Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

Пластичность

Автоматия

Проводимость

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

Способность к делению и дифференцировке

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.

Все мышцы организма делят на гладкие и поперечнополосатые.

Механизмы сокращения скелетных мышц

Поперечнополосатые мышцы подразделяются на два типа: скелетные мышцы и миокард.

Строение мышечного волокна

Мембрана мышечных клеток, называемая сарколеммой, электровозбудима и способна проводить потенциал действия. Эти процессы в мышечных клетках происходят по тому же принципу, что и в нервных. Потенциал покоя мышечного волокна составляет приблизительно -90 мВ, то есть ниже, чем у нервного волокна (-70 мВ); критическая деполяризация, по достижении которой возникает потенциал действия, такая же, как у нервного волокна. Отсюда: возбудимость мышечного волокна несколько ниже возбудимости нервного, так как мышечную клетку требуется деполяризировать на большую величину.

Ответом мышечного волокна на возбуждение является сокращение , которое совершает сократительный аппарат клетки – миофибриллы . Они представляют собой тяжи, состоящие из двух видов нитей: толстых – миозиновых , и тонких – актиновых . Толстые нити (диаметром 15 нм и длиной 1,5 мкм) имеют в своем составе только один белок – миозин. Тонкие нити (диаметром 7 нм и длиной 1 мкм) содержат три вида белков: актин, тропомиозин и тропонин.

Актин представляет собой длинную белковую нить, которая состоит из отдельных глобулярных белков, сцепленных между собой таким образом, что вся структура представляет собой вытянутую цепь. Молекулы глобулярного актина (G-актина) имеют боковые и концевые центры связывания с другими такими же молекулами. В результате они объединяются таким образом, что образуют структуру, которую часто сравнивают с двумя нитками бус, соединенных вместе. Образованная из молекул G-актина лента закручена в спираль. Такая структура называется фибриллярным актином (F-актином). Шаг спирали (длина витка) составляет 38 нм, на каждый виток спирали приходится 7 пар G-актина. Полимеризация G-актина, то есть образование F-актина, происходит за счет энергии АТФ, и, наоборот, при разрушении F-актина выделяется энергия.

Рис.1. Объединение отдельных глобул G-актина в F-актин

Вдоль спиральных желобков актиновых филаментов располагается белок тропомиозин, Каждая нить тропомиозина, имеющая длину 41 нм, состоит из двух идентичных α-цепей, вместе закрученных в спираль с длиной витка 7 нм. Вдоль одного витка F-актина расположены две молекулы тропомиозина. Каждая тропомиозиновая молекула соединяется, немного перекрываясь, со следующей, в результате тропомиозиновая нить простирается вдоль актина непрерывно.

Рис.2. Строение тонкой нити миофибриллы

В клетках поперечнополосатых мышц в состав тонких нитей кроме актина и тропомиозина входит ещё и белок тропонин. Этот глобулярный белок имеет сложное строение. Он состоит из трех субъединиц, каждая из которых выполняет свою функцию в процессе сокращения.

Толстая нить состоит из большого числа молекул миозина , собранных в пучок. Каждая молекула миозина длиной 155 нм и диаметром 2 нм состоит из шести полипептидных нитей: двух длинных и четырех коротких. Длинные цепи вместе закручены в спираль с шагом 7,5 нм и образуют фибриллярную часть миозиновой молекулы. На одном из концов молекулы эти цепи раскручиваются и образуют раздвоенный конец. Каждый из этих концов образует комплекс двумя короткими цепями, то есть на каждой молекуле имеются две головки. Это глобулярная часть миозиновой молекулы.

Рис.3. Строение молекулы миозина.

В миозине выделяют два фрагмента: легкий меромиозин (ЛММ) и тяжелый меромиозин (ТММ), между ними находится шарнир. ТММ состоит из двух субфрагментов: S1 и S2. ЛММ и субфрагмент S2 вложены в пучок нитей, а субфрагмент S1 выступает над поверхностью. Этот выступающий конец (миозиновая головка) способен связываться с активным центром на актиновой нити и изменять угол наклона к пучку миозиновых нитей. Объединение отдельных молекул миозина в пучок происходит за счет электростатических взаимодействий между ЛММ. Центральная часть нити не имеет головок. Весь комплекс миозиновых молекул простирается на 1,5 мкм. Это одна из самых больших биологических молекулярных структур, известных в природе.

При рассматривании в поляризационный микроскоп продольного среза поперечнополосатой мышцы видны светлые и темные участки. Темные участки (диски) являются анизотропными: в поляризованном свете они выглядят прозрачными в продольном направлении и непрозрачными – в поперечном, обозначаются буквой А. Светлые участки являются изотропными и обозначаются буквой I. Диск I включает в себя только тонкие нити, а диск А – и толстые, и тонкие. В середине диска А видна светлая полоска, называемая Н-зоной. Она не имеет тонких нитей. Диск I разделен тонкой полосой Z, которая представляет собой мембрану, содержащую структурные элементы, скрепляющие между собой концы тонких нитей. Участок между двумя Z-линиями называется саркомером .

Рис.4. Структура миофибриллы (поперечный срез)

Рис.5. Строение поперечнополосатой мышцы (продольный срез)

Каждая толстая нить окружена шестью тонкими, а каждая тонкая нить – тремя толстыми. Таким образом, в поперечном срезе мышечное волокно имеет правильную гексагональную структуру.

Сокращение мышцы

При сокращении мышцы длина актиновых и миозиновых филаментов не изменяется. Происходит лишь их смещение относительно друг друга: тонкие нити задвигаются в промежуток между толстыми. При этом длина диска А остается неизменной, а диск I укорачивается, полоска Н почти исчезает. Такое скольжение оказывается возможным благодаря существованию поперечных мостиков (миозиновых головок) между толстыми и тонкими нитями. При сокращении возможно изменение длины саркомера приблизительно от 2,5 до 1,7 мкм.

Миозиновая нить имеет на себе множество головок, которыми она может связываться с актином. Актиновая же нить, в свою очередь, имеет участки (активные центры), к которым могут прикрепляться головки миозина. В покоящейся мышечной клетке эти центры связывания прикрыты молекулами тропомиозина, что препятствует образованию связи между тонкими и толстыми нитями.

Для того чтобы актин и миозин могли взаимодействовать, необходимо присутствие ионов кальция. В покое они находятся в саркоплазматическом ретикулуме. Эта органелла представляет собой мембранные полости, содержащие кальциевый насос, который за счет энергии АТФ транспортирует ионы кальция внутрь саркоплазматического ретикулума. Его внутренняя поверхность содержит белки, способные связывать Ca2+, что несколько уменьшает разность концентраций этих ионов между цитоплазмой и полостью ретикулума. Распространяющийся по клеточной мембране потенциал действия активирует близко расположенную к поверхности клетки мембрану ретикулума и вызывает выход Ca2+ в цитоплазму.

Молекула тропонина обладает высоким сродством к кальцию.

Под его влиянием она изменяет положение тропомиозиновой нити на актиновой таким образом, что открывается активный центр, ранее прикрытый тропомиозином. К открывшемуся активному центру присоединяется поперечный мостик. Это приводит к взаимодействию актина с миозином. После образования связи миозиновая головка, ранее расположенная под прямым углом к нитям, наклоняется и протаскивает актиновую нить относительно миозиновой приблизительно на 10 нм. Образовавшийся атин-миозиновый комплекс препятствует дальнейшему скольжению нитей относительно друг друга, поэтому необходимо его разъединение. Это возможно только за счет энергии АТФ. Миозин обладает АТФ-азной активностью, то есть способен вызывать гидролиз АТФ. Выделяющаяся при этом энергия разрывает связь между актином и миозином, и миозиновая головка способна взаимодействовать с новым участком молекулы актина. Работа мостиков синхронизирована таким образом, что связывание, наклон и разрыв всех мостиков одной нити происходит одновременно. При расслаблении мышцы активизируется работа кальциевого насоса, что понижает концентрацию Ca2+ в цитоплазме; следовательно, связи между тонкими и толстыми нитями уже не могут образовываться. В этих условиях при растяжении мышцы нити беспрепятственно скользят относительно друг друга. Однако такая растяжимость возможна только в присутствии АТФ. Если в клетке отсутствует АТФ, то актин-миозиновый комплекс не может разорваться. Нити остаются жестко сцепленными между собой. Это явление наблюдается при трупном окоченении.

Рис.6. Сокращение саркомера: 1 – миозиновая нить; 2 – активный центр; 3 – актиновая нить; 4 – миозиновая головка; 5 — Z-линия.

а) взаимодействие между тонкими и толстыми нитями отсутствует;

б) в присутствии Ca2+ миозиновая головка связывается с активным центром на актиновой нити;

в) поперечные мостики наклоняются и протаскивают тонкую нить относительно толстой, вследствие чего длина саркомера уменьшается;

г) связи между нитями разрываются за счет энергии АТФ, миозиновые головки готовы взаимодействовать с новыми активными центрами.

Существует два режима сокращения мышцы: изотоническое (изменяется длина волокна, а напряжение остается неизменным) и изометрическое (концы мышцы неподвижно закреплены, вследствие чего изменяется не длина, а напряжение).

Мощность и скорость сокращения мышцы

Важными характеристиками мышцы являются сила и скорость сокращения. Уравнения, выражающие эти характеристики, были эмпирически получены А.Хиллом и впоследствии подтверждены кинетической теорией мышесного сокращения (модель Дещеревского).

Уравнение Хилла , связывающее между собой силу и скорость сокращения мышцы, имеет следующий вид: (P+a)(v+b) = (P0+a)b = a(vmax+b) , где v – скорость укорочения мышцы; P – мышечная сила или приложенная к ней нагрузка; vmax — максимальная скорость укорочения мышцы; P0 — сила, развиваемая мышцей в изометрическом режиме сокращения; a,b — константы. Общая мощность , развиваемая мышцей, определяется по формуле: Nобщ = (P+a)v = b(P0-P) . КПД мышцы сохраняет постоянное значение (около 40% ) в диапазоне значений силы от 0,2 P0 до 0,8 P0. В процессе сокращения мышцы выделяется некоторое количество теплоты. Эта величина называется теплопродукцией . Теплопродукция зависит только от изменения длины мышцы и не зависит от нагрузки. Константы a и b имеют постоянные значения для данной мышцы. Константа а имеет размерность силы, а b – скорости. Константа b в значительной степени зависит от температуры. Константа а находится в диапазоне значений от 0,25 P0 до 0,4 P0. По этим данным оценивается максимальная скорость сокращения для данной мышцы: vmax = b (P0 / a) .

Характеристика мышечной ткани.

Сокращение скелетной мышцы и его механизмы

Виды мышечной ткани. Актино-миозиновый комплекс и механизмы его функционирования.

Существует 3 вида животных тканей 1)мыщечная, 2) нервная, 3) секреторная. Первая отвечает на возбуждение сокращением и осуществлением работы перемещения. Вторые – способностью проводить и анализировать импульсы, третьи – выделять различные секреты.

Различают 3 вида мышечной ткани: 1. поперечно-полосатая, 2. гладкая, 3.сердечная.

Характеристики поперчно-полосатая гладкая сердечная
специализация очень высокая наименее специализ. средняя специализ.
строение длинные до 10 см волокна, разделены на субъединицы — саркомеры. Волокна соединены между собой соединительной тканью, кровеносными сосудами. К волокнам подходят нервные окончания, образующие нервно- мышечные соединения Состоит из отдельных веретеноподобн. кл., соединенных в пучки. Клетки на концах разветвляются, соединяются др. с др. помощью отростков.
ядро Несколько ядер у переферии 1 ядро в центе несколько ядер в центре
цитоплазма содержит митохондрии, саркоплазм. ретикулум, Т трубки, гликоген, жировые капли сод. митохондр., саркоплазм. ретикулум, Ттрубки, сод. митохондр., саркоплазм. ретикулум, Т трубки,
сарколемма есть нет есть
регуляция нейрогенная нейрогенная нейрог. и гуморальная
поперечные полосы есть нет есть
Активность соединения. мощные, быстрые сокращения. Период рефрактерности мал- время отдыха мало.быстрое уставание. медленный ритм быстрый ритм, большое рефрактерное время -нет усталости.

Актино-миозиновый комплекс. Все мышечные кл. содержат большое количество специальных сократительных белков — их 60-80% от общего количества белков мышц. Главными сократительными

белками являются фибриллярные белки: — миозин — образует толстые нити; — актин — образует тонкие нити. Для регуляции сокращения используются глобулярные белки: тропонин-тропомиозин.

Миозин — 2-х цепочечная структура 1=180 нм и 0=2,5 нм. Актин — 2-х спиральная пептидная цепь.

Механизм сокращения: Актин и миозин в фибрилле пространственно разделены. Нервный импульс вызываетвыделение ацетилхолина в синапртическую щель нервно-мышечного соединения. Это

вызывает деполяризацию постсинаптической мембраны после связывания медиатора и

распространения потенциала действия по клеточным мембранам и внутрь мышечного

волокна по Т трубкам. В результате взаимодействия актин-миозин происходит сокращение фибрилл. Это достигается за счет проталкивания головкой миозина актиновой нити в результате образования мостика. Когда импульс исчезает Са2+ восстанавливается, мостик между актином и миозином разрушается и мышца возвращается в исходное состояние.

Тропонин — глобулярный белок, имеющий 3 центра:

— Т — связывает с тропомиозином

— С — связывает Са2+

— 1 — ингибирует взаимодействие актин-миозин.

Фазы сокращения:

1. Латентный период — 0,05 сек.

2. Фаза сокращения — 0,1 сек

3. Период расслабления — 0,2 сек.

Биохимия работы мышц

1. АТФ + миозин-актиновый комплекс——-АДФ + Миозин + актин + Ф + энергия

2. АДФ + креатинин-фосфат——АТФ + креатин

3. Гликоген—Глюкоза ——Глюкоза + О2—-СО2 + Н2О + 38 АТФ (аэробный процесс)

4. Глюкоза—-2 молочная кислота + 2 АТФ (анаэробный процесс-разлр.нервн. оконч.-

5. Молочная к-та + О2—СО2 + Н2О (отдых) или Мол.к-та—глюкоза—гликоген.

Механизм сокращения скелетной мышцы

Укорочение мышцы является результатом сокращения множества саркомеров. При укорочении актиновые нити скользят относительно миозиновых, в результате чего длина каждого саркомера мышечного волокна уменьшается. При этом длина самих нитей остается неизменной. Миозиновые нити имеют поперечные выступы (поперечные мостики) длиной около 20 нм. Каждый выступ состоит из головки, которая соединена с миозиновой нитью посредством «шейки» (рис. 23).

При расслабленном состоянии мышцы головки поперечных мостиков не могут взаимодействовать с актиновыми нитями, поскольку их активные участки (места взаимного контакта с головками) изолированы тропомиозином. Укорочение мышцы является результатом конформационных изменений поперечного мостика: его головка совершает наклон с помощью сгибания «шейки».

Рис. 23. Ространственная организация сократительных и регуляторных белков в исчерченной мышце. Показано положение миозинового мостика (гребковый эффект, шейка согнута) в процессе взаимодействия сократительных белков в мышечных волокне (сокращение волокна)

Последовательность процессов, обеспечивающих сокращение мышечного волокна (электромеханическое сопряжение):

1. После возникновения ПД в мышечном волокне вблизи синапса (за счет электрического поля ПКП) возбуждение распространяется по мембране миоцита , в том числе по мембранам поперечных Т-трубочек . Механизм проведения ПД по мышечному волокну такой же, как и по безмиелиновому нервному волокну - возникший ПД вблизи синапса посредством своего электрического поля обеспечивает возникновение новых ПД в соседнем участке волокна и т.д. (непрерывное проведение возбуждения).

2. Потенциал действия Т-трубочек за счет своего электрического поля активирует потенциалуправляемые кальциевые каналы на мембране СПР , вследствие чего Са2+ выходит из цистерн СПР согласно электрохимическому градиенту.

3. В межфибриллярном пространстве Са2+ контактирует с тропонином , что приводит к его конформации и смещению тропомиозина, в результате чего на нитях актина обнажаются активные участки , с которыми соединяются головки миозиновых мостиков.

4. В результате взаимодействия с актином АТФазная активность головок миозиновых нитей усиливается , обеспечивая освобождение энергии АТФ, которая расходуется на сгибание миозинового мостика, внешне напоминающего движение весел при гребле (гребковое движение) (см. рис. 23), обеспечивающее скольжение актиновых нитей относительно миозиновых . На совершение одного гребкового движения расходуется энергия одной молекулы АТФ. При этом нити сократительных белков смещаются на 20 нм. Присоединение новой молекулы АТФ к другому участку головки миозина ведет к прекращению зацепления ее, но при этом энергия АТФ не расходуется. При отсутствии АТФ головки миозина не могут оторваться от актина - мышца напряжена; таков, в частности, механизм трупного окоченения.

5. После этого головки поперечных мостиков в силу своей эластичности возвращаются в исходное положение и устанавливают контакт со следующим участком актина ; далее вновь происходит очередное гребковое движение и скольжение актиновых и миозиновых нитей. Подобные элементарные акты многократно повторяются. Одно гребковое движение (один шаг) вызывает уменьшение длины каждого саркомера на 1%. При сокращении изолированной мышцы лягушки без нагрузки 50% укорочение саркомеров происходит за 0,1 с. Для этого необходимо совершение 50 гребковых движений.

Механизм мышечного сокращения

Миозиновые мостики сгибаются асинхронно, но в связи с тем, что их много и каждая миозиновая нить окружена несколькими актиновыми нитями, сокращение мышцы происходит плавно.

Расслабление мышцы происходит благодаря процессам, протекающим в обратной последовательности. Реполяризация сарколеммы и Т-трубочек ведет к закрытию кальциевых потенциалуправляемых каналов мембраны СПР. Са-насосы возвращают Са2+ в СПР (активность насосов возрастает при увеличении концентрации свободных ионов).

Снижение концентрации Са2+ в межфибриллярном пространстве вызывает обратную конформацию тропонина, в результате чего тропомиозиновые нити изолируют активные участки актиновых филаментов, что делает невозможным взаимодействие с ними головок поперечных мостиков миозина. Скольжение актиновых нитей вдоль миозиновых в обратном направлении происходит под действием сил гравитации и эластической тяги элементов мышечного волокна, что восстанавливает исходные размеры саркомеров.

Источником энергии для обеспечения работы скелетных мышц является АТФ, расходы которой значительны. Даже в условиях основного обмена на функционирование мускулатуры организм затрагивает около 25% всех своих энергоресурсов. Затраты энергии резко возрастают во время выполнения физической работы.

Запасы АТФ в мышечном волокне незначительны (5 ммоль/л) и могут обеспечить не более 10 одиночных сокращений.

Расход энергии АТФ необходим для осуществления следующих процессов.

Во-первых, энергия АТФ расходуется на обеспечение работы Nа/К-насоса (он поддерживает градиент концентрации Na+ и К+ внутри и вне клетки, формирующих ПП и ПД, обеспечивающего электромеханическое сопряжение) и работы Са-насоса, который понижает концентрацию Са2+ в саркоплазме по-сле сокращения мышечного волокна, что приводит к расслаблению.

Во-вторых, энергия АТФ расходуется на гребковое движение миозиновых мостиков (сгибание их).

Ресинтез АТФ осуществляется с помощью трех энергетических систем организма.

1. Фосфогенная энергетическая система обеспечивает ресинтез АТФ за счет имеющегося в мышцах высокоэнергоемкого КФ и образовавшейся при расщеплении АТФ аденозиндифосфорной кислоты (аденозиндифосфат, АДФ) с образованием креатина (К): АДФ + + КФ → АТФ + К. Это мгновенный ресинтез АТФ, при этом мышца может развивать большую мощность, но кратковременно - до 6 с, поскольку запасы КФ в мышце ограниченны.

2. Анаэробная гликолитическая энергетическая система обеспечивает ресинтез АТФ за счет энергии анаэробного расщепления глюкозы до молочной кислоты. Этот путь ресинтеза АТФ является быстрым, но тоже кратковременным (1-2 мин), так как накопление молочной кислоты тормозит активность гликолитических ферментов. Однако лактат, вызывая местный сосудорасширяющий эффект, улучшает кровоток в работающей мышце и снабжение ее кислородом и питательными веществами.

3. Аэробная энергетическая система обеспечивает ресинтез АТФ с помощью окислительного фосфорилирования углеводов и жирных кислот , протекающего в митохондриях мышечных клеток. Этот способ может обеспечить энергией работу мышц в течение нескольких часов и является основным способом энергетического обеспечения работы скелетных мышц.

Виды мышечных сокращений

В зависимости от характера сокращений мышцы различают три их вида: изометрическое, изотоническое и ауксотоническое .

Ауксотоническое сокращение мышцы заключается в одновременном изменении длины и напряжения мышцы. Этот вид сокращения характерно для натуральных двигательных актов и бывает двух видов: эксцентрическое, когда напряжение мышцы сопровождается ее удлинением - например, в процессе приседания (опускания), и концентрическое, когда напряжение мышцы сопровождается ее укорочением - например, при разгибании нижних конечностей после приседания (подъем).

Изометрическое сокращение мышцы - когда напряжение мышцы возрастает, а длина ее не изменяется. Этот вид сокращения можно наблюдать в эксперименте, когда оба конца мышцы зафиксированы и отсутствует возможность их сближения, и в естественных условиях - например, в процессе приседания и фиксации положения.

Изотоническое сокращение мышцы заключается в укорочении мышцы при ее постоянном напряжении. Этот вид сокращения возникает, когда сокращается ненагруженная мышца с одним закрепленным сухожилием, не поднимая (не перемещая) никакого внешнего груза либо поднимая груз без ускорения.

В зависимости от длительности сокращений мышцы выделяют два их вида: одиночное и тетаническое.

Одиночное сокращение мышцы возникает при однократном раздражении нерва или самой мышцы. Обычно мышца укорачивается на 5-10% от исходной длины. На кривой одиночного сокращения выделяют три основных периода: 1) латентный - время от момента нанесения раздражения до начала сокращения; 2) период укорочения (или развития напряжения) ; 3) период расслабления . Продолжительность одиночных сокращений мышц человека вариабельна. Например, у камбаловидной мышцы она составляет 0,1 с. В латентный период возникает возбуждение мышечных волокон и его проведение вдоль мембраны. Соотношения длительности одиночного сокращения мышечного волокна, его возбуждения и фазовые изменения возбудимости мышечного волокна показаны на рис. 24.

Длительность сокращения мышечного волокна значительно дольше таковой ПД потому, что необходимо время на работу Са-насосов для возвращения Са2+ в СПР и окружающую среду и большей инерционности механических процессов по сравнению с электрофизиологическими.

Рис. 24. Соотношение времени возникновения ПД (А) и одиночного сокращения (Б) медленного волокна скелетной мышцы теплокровного. Стрелка – момент нанесения раздражения. Время сокращения быстрых волокон в несколько раз короче

Тетаническое сокращение - это длительное сокращение мышцы, возникающее под действием ритмического раздражения, когда каждое последующее раздражение или нервные импульсы поступают к мышце, пока она еще не расслабилась. В основе тетанического сокращения лежит явление суммации одиночных мышечных сокращений (рис. 25) - увеличение амплитуды и длительности сокращения при нанесении на мышечное волокно или целую мышцу двух и более быстро следующих друг за другом раздражений.

Рис. 25. Суммация сокращений икроножной мышцы лягушки: 1 – кривая одиночного сокращения в ответ на первое раздражение расслабленной мышцы; 2 – кривая одиносного сокращения той же мышцы в ответ на второе раздражние; 3 – кривая суммированного сокращения, полученного в результате спаренного раздражения сокращающейся мышцы (обозначено стрелками )

При этом раздражения должны поступать в период предыдущего сокращения. Увеличение амплитуды сокращений объясняется увеличением концентрации Са2+ в гиалоплазме при повторном возбуждении мышечных волокон, поскольку Са-помпа не успевает возвращать его в СПР. Са2+ обеспечивает увеличение числа зон зацепления миозиновых мостиков с нитями актина.

Если повторные импульсы или раздражения поступают в фазу расслабления мышц, возникает зубчатый тетанус . Если повторные раздражения приходятся на фазу укорочения, возникает гладкий тетанус (рис. 26).

Рис. 26. Сокращение икроножной мышцы лягушки при различной частоте раздражения седалищного нерва: 1 – одиночное сокращение (частота 1 Гц); 2,3 – зубчатый тетанус (15-20 Гц); 4,5 – гладкий тетанус (25-60 Гц); 6 – расслабление при пессимальной частоте раздражения (120 Гц)

Амплитуда сокращения и величина напряжения, развиваемые мышечными волокнами при гладком тетанусе, обычно в 2-4 раза больше, чем при одиночном сокращении. Тетаническое сокращение мышечных волокон, в отличие от одиночных сокращений, быстрее вызывает их утомление.

При возрастании частоты стимуляции нерва или мышцы амплитуда гладкого тетануса увеличивается. Максимальный тетанус получил название оптимума. Увеличение тетануса объясняется накоплением Са2+ в гиалоплазме. При дальнейшем увеличении частоты стимуляции нерва (около 100 Гц) мышца расслабляется вследствие развития блока проведения возбуждения в нервно-мышечных синапсах - пессимум Введенского (частота раздражения пессимальная ) (см. рис. 26). Пессимум Введенского можно получить и при прямом, но более частом раздражении мышцы (около 200 имп./с), однако при этом для чистоты эксперимента следует заблокировать нервно-мышечные синапсы. Если после возникновения пессимума уменьшить частоту стимуляции до оптимальной, то амплитуда мышечного сокращения мгновенно возрастает - свидетельство того, что пессимум не является результатом утомления мышцы или истощением энергетических ресурсов.

В естественных условиях отдельные мышечные волокна чаще сокращаются в режиме зубчатого тетануса, однако сокращение целой мышцы напоминает гладкий тетанус, вследствие асинхронности их сокращения.